Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years.

Identifieur interne : 002018 ( Main/Exploration ); précédent : 002017; suivant : 002019

The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years.

Auteurs : Cédric Moisy [France] ; Alan H. Schulman ; Ruslan Kalendar ; Jan P. Buchmann ; Frédérique Pelsy

Source :

RBID : pubmed:24590356

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Combining several different approaches, we have examined the structure, variability, and distribution of Tvv1 retrotransposons. Tvv1 is an unusual example of a low-copy retrotransposon metapopulation dispersed unevenly among very distant species and is promising for the development of molecular markers. Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.


DOI: 10.1007/s00122-014-2293-z
PubMed: 24590356


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years.</title>
<author>
<name sortKey="Moisy, Cedric" sort="Moisy, Cedric" uniqKey="Moisy C" first="Cédric" last="Moisy">Cédric Moisy</name>
<affiliation wicri:level="4">
<nlm:affiliation>MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland, cedric.moisy@supagro.inra.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland</wicri:regionArea>
<wicri:noRegion>Finland</wicri:noRegion>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schulman, Alan H" sort="Schulman, Alan H" uniqKey="Schulman A" first="Alan H" last="Schulman">Alan H. Schulman</name>
</author>
<author>
<name sortKey="Kalendar, Ruslan" sort="Kalendar, Ruslan" uniqKey="Kalendar R" first="Ruslan" last="Kalendar">Ruslan Kalendar</name>
</author>
<author>
<name sortKey="Buchmann, Jan P" sort="Buchmann, Jan P" uniqKey="Buchmann J" first="Jan P" last="Buchmann">Jan P. Buchmann</name>
</author>
<author>
<name sortKey="Pelsy, Frederique" sort="Pelsy, Frederique" uniqKey="Pelsy F" first="Frédérique" last="Pelsy">Frédérique Pelsy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24590356</idno>
<idno type="pmid">24590356</idno>
<idno type="doi">10.1007/s00122-014-2293-z</idno>
<idno type="wicri:Area/Main/Corpus">002281</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002281</idno>
<idno type="wicri:Area/Main/Curation">002281</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002281</idno>
<idno type="wicri:Area/Main/Exploration">002281</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years.</title>
<author>
<name sortKey="Moisy, Cedric" sort="Moisy, Cedric" uniqKey="Moisy C" first="Cédric" last="Moisy">Cédric Moisy</name>
<affiliation wicri:level="4">
<nlm:affiliation>MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland, cedric.moisy@supagro.inra.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland</wicri:regionArea>
<wicri:noRegion>Finland</wicri:noRegion>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schulman, Alan H" sort="Schulman, Alan H" uniqKey="Schulman A" first="Alan H" last="Schulman">Alan H. Schulman</name>
</author>
<author>
<name sortKey="Kalendar, Ruslan" sort="Kalendar, Ruslan" uniqKey="Kalendar R" first="Ruslan" last="Kalendar">Ruslan Kalendar</name>
</author>
<author>
<name sortKey="Buchmann, Jan P" sort="Buchmann, Jan P" uniqKey="Buchmann J" first="Jan P" last="Buchmann">Jan P. Buchmann</name>
</author>
<author>
<name sortKey="Pelsy, Frederique" sort="Pelsy, Frederique" uniqKey="Pelsy F" first="Frédérique" last="Pelsy">Frédérique Pelsy</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="eISSN">1432-2242</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conserved Sequence (MeSH)</term>
<term>Gene Dosage (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Medicago truncatula (genetics)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Retroelements (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Solanum (genetics)</term>
<term>Vitis (genetics)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Dosage génique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Medicago truncatula (génétique)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Rétroéléments (génétique)</term>
<term>Solanum (génétique)</term>
<term>Séquence conservée (MeSH)</term>
<term>Vitis (génétique)</term>
<term>Zea mays (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Retroelements</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
<term>Oryza</term>
<term>Solanum</term>
<term>Vitis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Oryza</term>
<term>Rétroéléments</term>
<term>Solanum</term>
<term>Vitis</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Conserved Sequence</term>
<term>Gene Dosage</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Dosage génique</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Combining several different approaches, we have examined the structure, variability, and distribution of Tvv1 retrotransposons. Tvv1 is an unusual example of a low-copy retrotransposon metapopulation dispersed unevenly among very distant species and is promising for the development of molecular markers. Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24590356</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>127</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years.</ArticleTitle>
<Pagination>
<MedlinePgn>1223-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-014-2293-z</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">Combining several different approaches, we have examined the structure, variability, and distribution of Tvv1 retrotransposons. Tvv1 is an unusual example of a low-copy retrotransposon metapopulation dispersed unevenly among very distant species and is promising for the development of molecular markers. Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moisy</LastName>
<ForeName>Cédric</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>MTT/BI Plant Genomics Lab, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Biocenter 3, Viikinkaari 1, 00014, Helsinki, Finland, cedric.moisy@supagro.inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schulman</LastName>
<ForeName>Alan H</ForeName>
<Initials>AH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kalendar</LastName>
<ForeName>Ruslan</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buchmann</LastName>
<ForeName>Jan P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pelsy</LastName>
<ForeName>Frédérique</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018626">Retroelements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018626" MajorTopicYN="N">Retroelements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032322" MajorTopicYN="N">Solanum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24590356</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-014-2293-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jun 1;29(11):2217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11376139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13778-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2001 Aug;58(9):1246-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Oct;9(10):924-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2009 Nov 02;4:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19883502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2006 Dec;97(6):381-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 09;9:366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18782453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Sep;20(1):43-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9731528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Mar 16;9:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19291296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006 Apr 09;6:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Mar;281(3):261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19093134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2005 Sep;61(3):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16034651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2011 Dec;162(1-2):203-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21945638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Sep;59(5):712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Mar;116(5):671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Feb;19(2):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Mar;25(2):100-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16402250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Oct 09;9:469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Dec;262(4-5):703-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10628852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Jul 06;8:218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jun 1;14(11):2670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7781619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jul;10(7):908-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Apr 1;390(1-2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Jun;134(1-2):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 May;9(5):411-2; author reply 414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 Oct 26;7:275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2013 Dec;3(6):604-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24035277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18040048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Sep;105(4):614-621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1760-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1995 Jan;12(1):62-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7877497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Sep;15(9):1135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9729878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(6):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Dec;116(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17926019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jul;17(7):1072-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2010 Feb;18(2):227-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20127167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jan;55(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11263730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Jul 24;8:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17650302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Apr;181(4):1183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19153256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2008;1(1):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2011 Aug;98(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1999;33:479-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10690416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):9864-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7427-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Dec 15;448(2):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26726-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2006 May;49(5):558-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16767181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Feb;18(2):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 May;283(5):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361338</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Buchmann, Jan P" sort="Buchmann, Jan P" uniqKey="Buchmann J" first="Jan P" last="Buchmann">Jan P. Buchmann</name>
<name sortKey="Kalendar, Ruslan" sort="Kalendar, Ruslan" uniqKey="Kalendar R" first="Ruslan" last="Kalendar">Ruslan Kalendar</name>
<name sortKey="Pelsy, Frederique" sort="Pelsy, Frederique" uniqKey="Pelsy F" first="Frédérique" last="Pelsy">Frédérique Pelsy</name>
<name sortKey="Schulman, Alan H" sort="Schulman, Alan H" uniqKey="Schulman A" first="Alan H" last="Schulman">Alan H. Schulman</name>
</noCountry>
<country name="France">
<region name="Uusimaa">
<name sortKey="Moisy, Cedric" sort="Moisy, Cedric" uniqKey="Moisy C" first="Cédric" last="Moisy">Cédric Moisy</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24590356
   |texte=   The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24590356" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020